169 research outputs found

    The Willingness toward Vaccination: A Focus on Non-Mandatory Vaccinations

    Get PDF
    The Special Issue "The Willingness toward Vaccination: A Focus on Non-mandatory Vaccinations", published in the journal Vaccines, has the main aim of gathering more data on vaccine hesitancy and the willingness of individuals to receive vaccinations, particularly in the context of non-mandatory vaccines. The aim is to address vaccine hesitancy and improve vaccine coverage rates, in addition to identifying the determinants of vaccine hesitancy itself. This Special Issue garners articles that examine the external and internal factors that can influence the decision-making process of individuals regarding vaccination. Given that vaccine hesitancy is present in a significant part of the general population, it is crucial to have a better analytical understanding of the areas where hesitancy arises to determine appropriate strategies to address this issue

    Silk reinforced with graphene or carbon nanotubes spun by spiders

    Full text link
    Here, we report the production of silk incorporating graphene and carbon nanotubes directly by spider spinning, after spraying spiders with the corresponding aqueous dispersions. We observe a significant increment of the mechanical properties with respect to the pristine silk, in terms of fracture strength, Young's and toughness moduli. We measure a fracture strength up to 5.4 GPa, a Young's modulus up to 47.8 GPa and a toughness modulus up to 2.1 GPa, or 1567 J/g, which, to the best of our knowledge, is the highest reported to date, even when compared to the current toughest knotted fibres. This approach could be extended to other animals and plants and could lead to a new class of bionic materials for ultimate applications

    Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors

    Full text link
    The miniaturization of energy storage units is pivotal for the development of next-generation portable electronic devices. Micro-supercapacitors (MSCs) hold a great potential to work as on-chip micro-power sources and energy storage units complementing batteries and energy harvester systems. The scalable production of supercapacitor materials with cost-effective and high-throughput processing methods is crucial for the widespread application of MSCs. Here, we report wet-jet milling exfoliation of graphite to scale-up the production of graphene as supercapacitor material. The formulation of aqueous/alcohol-based graphene inks allows metal-free, flexible MSCs to be screen-printed. These MSCs exhibit areal capacitance (Careal) values up to 1.324 mF cm-2 (5.296 mF cm-2 for a single electrode), corresponding to an outstanding volumetric capacitance (Cvol) of 0.490 F cm-3 (1.961 F cm-3 for a single electrode). The screen-printed MSCs can operate up to power density above 20 mW cm-2 at energy density of 0.064 uWh cm-2. The devices exhibit excellent cycling stability over charge-discharge cycling (10000 cycles), bending cycling (100 cycles at bending radius of 1 cm) and folding (up to angles of 180{\deg}). Moreover, ethylene vinyl acetate-encapsulated MSCs retain their electrochemical properties after a home-laundry cycle, providing waterproof and washable properties for prospective application in wearable electronics
    corecore